Dynamically generated dimension reduction and crossover in a spin-orbital model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Correlations in a Dynamically Generated Model Food Web

We explore aspects of the community structures generated by a simple predator-prey model of biological coevolution, using large-scale kinetic Monte Carlo simulations. The model accounts for interspecies and intraspecies competition for resources, as well as adaptive foraging behavior. It produces a metastable low-diversity phase and a stable high-diversity phase. The structures and joint indegr...

متن کامل

Spin, Orbital, and Spin-Orbital Polarons in Transition Metal Oxides

I give a brief overview of a polaron formation in three distinct transition metal oxides: (i) spin polaron when a hole is added to the antiferromagnetic (AF) ordered plane in La2CuO4, (ii) orbital polaron when a hole is added to the alternating orbital (AO) ordered plane in LaMnO3, and (iii) spin-orbital polaron when a hole is added to the AF and AO ordered plane in LaVO3. Comparison of the dis...

متن کامل

Interfaces and louver critical dimension in a spin glass model

In this paper we try to estimate the lower cntical dimension for replica symmetry

متن کامل

Dynamically Deened Recurrence Dimension

In this paper, we introduce and characterize the dynamically deened recurrence dimension, a new topological invariant number, following the idea of a previous article 9], but with some modiications and improvements. We study some example of Toeplitz subshifts for which we can show that the recurrence dimension is a topologically invariant number diierent from the topological entropy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2004

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.70.100405